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T
he power output of high-
performance, thin-electrolyte fuel
cells is, by definition, limited by the

rate of electrochemical reactions at the elec-

trode rather than by ion transport through

the electrolyte. Accordingly, substantial ef-

fort has been directed toward understand-

ing electrochemical reaction pathways and

identifying rate-limiting steps, with the ulti-

mate aim of developing new electrode ma-

terials and/or structures with enhanced

activity. The vast majority of such electro-

chemical studies have relied on fuel cell

electrodes of macroscopic dimensions, in

some cases with geometrically well-defined

structures1�13 and in others with compos-

ite electrodes more directly relevant to

technological applications.14�17 While such

studies have led to important insights and

advances, a comprehensive understanding

of reaction pathways remains elusive for vir-

tually every fuel cell type. It is to be expected

that electrochemical reactions, which occur

on surfaces that naturally display nanoscale

heterogeneity, themselves occur at rates that

are heterogeneous on the nanometer length

scale. Thus, the limitations of macroscale

measurements, which, by definition, cannot

probe such heterogeneity and instead pro-

vide ensemble-averaged data with little infor-

mation even about the distribution range of

properties, may inherently complicate eluci-

dation of electrochemical reaction pathways.

Despite the recognition that nanoscale het-

erogeneity may play an important role in fuel

cell electrode kinetics, few studies have been

directed toward explicitly uncovering varia-

tions in electrochemical reaction rates and

possibly even mechanisms at the nanometer

scale.

In this work, we utilize conducting
atomic force microscopy (AFM) for quantita-
tive electrochemical characterization of
metal�solid electrolyte interfaces. Configu-
rationally, the approach is similar to that
employed in recent studies in which con-
ducting AFM has been employed to evalu-
ate nanoscale heterogeneity in the trans-
port properties of ion conducting electrolyte
materials.18�23 The electrolyte material is con-
tacted over its entire area to an electrochemi-
cally active counter electrode (Figure 1) and
the conducting AFM probe contacted to
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ABSTRACT We quantitatively characterized oxygen reduction kinetics at the nanoscale Pt�CsHSO4 interface

at �150 °C in humidified air using conducting atomic force microscopy (AFM) in conjunction with AC impedance

spectroscopy and cyclic voltammetry. From the impedance measurements, oxygen reduction at Pt�CsHSO4 was

found to comprise two processes, one displaying an exponential dependence on overpotential and the other only

weakly dependent on overpotential. Both interfacial processes displayed near-ideal capacitive behavior, indicating

a minimal distribution in the associated relaxation time. Such a feature is taken to be characteristic of a nanoscale

interface in which spatial averaging effects are absent and, furthermore, allows for the rigorous separation of

multiple processes that would otherwise be convoluted in measurements using conventional macroscale electrode

geometries. The complete current�voltage characteristics of the Pt�CsHSO4 interface were measured at various

points across the electrolyte surface and reveal a variation of the oxygen reduction kinetics with position. The

overpotential-activated process, which dominates at voltages below �1 V, was interpreted as a charge-transfer

reaction. Analysis of six different sets of Pt�CsHSO4 experiments, within the Butler�Volmer framework, yielded

exchange coefficients (�) for charge transfer ranging from 0.1 to 0.6 and exchange currents (i0) spanning 5 orders

of magnitude. The observed counter-correlation between the exchange current and exchange coefficient indicates

that the extent to which the activation barrier decreases under bias (as reflected in the value of �) depends on

the initial magnitude of that barrier under open circuit conditions (as reflected in the value of i0). The clear

correlation across six independent sets of measurements further indicates the suitability of conducting AFM

approaches for careful and comprehensive study of electrochemical reactions at electrolyte�metal�gas

boundaries.

KEYWORDS: solid acid · scanning probe microscopy · microelectrode · impedance
spectroscopy · cyclic voltammetry · fuel cells · electrode kinetics

A
RTIC

LE

www.acsnano.org VOL. 4 ▪ NO. 5 ▪ 2811–2821 ▪ 2010 2811



the opposite surface. Because the electrolyte is elec-
tronically blocking, net current flow through the sys-
tem requires electrocatalysis to occur at sufficient rates
at both the counter and working (AFM tip) electrode.
For the study of the distribution of ion conducting and
insulating regions, as has been done for
polymers18�22,24,25 and more recently for ceramics,23 it
is sufficient to scan the electrolyte surface and differen-
tiate between regions of high and low current flow.
From such measurements, it is also possible to charac-
terize the nature of contact between the probe and
electrolyte.24,25 Here, we evaluate the complete
current�voltage characteristics at each point of inter-
est on the electrolyte surface to study directly the kinet-
ics of the electrochemical reaction and its nanoscale
heterogeneity.

The electrolyte material selected for study in
this work is CsHSO4, a so-called superprotonic solid
acid, which exhibits a proton conductivity of
�6 � 10�3 S cm�1 at a moderate temperature of
150 °C.26,27 We consider it a representative material for
superprotonic solid acids, in general,28 and specifically
for those such as CsH2PO4, which have been demon-
strated in fuel cells but require somewhat higher tem-
peratures to attain comparably high proton
conductivities.29,30 The electrochemical reaction of inter-
est (examined at 150 °C for all experiments in this study)
is that of oxygen electroreduction. The relevant global
reaction for a proton conducting electrolyte is given as

An attractive feature of the conducting AFM geom-
etry is the extreme asymmetry in the electrode areas.
As discussed in detail elsewhere,12 such asymmetry en-
sures that the overpotential (excess voltage drop rela-
tive to equilibrium) at the large counter electrode is
negligible relative to that at the working (AFM tip) elec-
trode. That is, because the current through each com-
ponent of the cell is the same, the current density is or-

ders of magnitude greater at the working electrode

than it is at the counter electrode, and accordingly, the

contribution of the counter electrode�electrolyte inter-

face to the voltage drop measured across the system is

negligible. Indeed, in the conducting AFM configura-

tion, even the voltage drop across the electrolyte is neg-

ligible relative to that due to the finite kinetics at the

working electrode. Thus, employing a nanoelectrode

enables electrochemical studies of a single

metal�electrolyte interface without the need for an ex-

ternal reference electrode, the placement of which has

been shown to be problematic in solid electrolyte

systems.31,32 Such a measurement directly yields the po-

tential at the working electrode, referenced to the

counter electrode, which, in turn, for the measurement

temperature of �150 °C is at �1.13 V relative to

2H� � 2e�º H2.

With this understanding, both cyclic voltammetry

and AC impedance spectroscopy were used for quanti-

tative electrochemical characterization. The former has

the benefits of providing complete DC current�voltage

characteristics at short time scales, before instrument

drift becomes problematic, but cannot deconvolute re-

sistance contributions resulting from multiple reaction

steps. Impedance spectroscopy provides the benefits of

deconvolution and, when carried out as a function of

bias, can also provide complete current�voltage char-

acteristics. The time scale of such measurements, how-

ever, is not sufficient to eliminate the possibility of a

drifting probe�sample contact over the course of the

experiment. The complementary information provided

by these two techniques has proven to be indispensible

in the present work.

RESULTS AND DISCUSSION
Cyclic Voltammetry. An initial comparison between the

behavior of Au and Pt was performed to verify that con-

tact could be made between the electrolyte surface

and the AFM probe. Cyclic voltammograms for

Au�CsHSO4 and Pt�CsHSO4 are presented in Figure 2.

The observation of low currents, �pA, is consistent

with the small size of the AFM probe (tip radius

�40 nm). Noise appearing in the voltammograms, re-

sulting from a combination of the relatively low spring

constant of the probe cantilever and elevated operating

temperatures, is minimal and does not mask any of

the salient characteristics. The voltammogram for

Au�CsHSO4 is featureless and displays less than 0.1 pA

current across all voltages. In contrast, the voltammo-

gram for Pt�CsHSO4 exhibits a peak at �0.34 V (onset of

about �0.1 V) overlaid with an overpotential-activated

rise in current at negative biases. At �1.1 V, the mea-

sured current for Pt is �15 pA, over 2 orders of magni-

tude higher than that for Au. These observations are

consistent with the relative activities of bulk gold and

platinum and confirm contact by the probe tip.

Figure 1. Schematic of nanoelectrode setup composed of
an atomic force microscope coupled with an external poten-
tiostat and a frequency response analyzer capable of mea-
suring fA current range. The hotstage can heat samples to
temperatures as high as 240 °C. The environmental cham-
ber encloses the probe-sample assembly and is equipped
with several inlet/outlet ports, enabling controlled
atmospheres.

1
2

O2+2H++2e- f H2O (1)
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The peak evident in the Pt voltammogram is readily

attributed to the reduction of platinum oxide. On the

basis of calculations from thermodynamic data33 for

T � 150 °C and pO2 � 0.21 atm, reduction of PtO, PtO2,

and Pt(OH)2 is expected to occur at �0.16, �0.14, and

�0.06 V, respectively, whereas measured platinum ox-

ide reduction potentials, for both smooth Pt surfaces in

aqueous acidic electrolytes34�36 and for Pt�Nafion

systems,24,37,38 range from �0.03 to �0.3 V, depending

on temperature and experimental conditions. The total

charge, �0.5 pC, implied by the integrated area under

the reduction peak and the scan rate, assuming the for-

mation of any of the possible oxides, corresponds to

the reduction of a plausible fraction of the Pt coating

available on the AFM tip. The absence of a correspond-

ing Pt oxidation peak on the reverse sweep indicates

that chemical oxidation of Pt, which by definition, can-

not generate a peak in the voltammogram, dominates

the process of oxide formation over electrochemical

oxidation.

While the Pt oxide reduction behavior on CsHSO4

bears some similarities to that at the interface with

aqueous and polymeric electrolytes, the Pt�CsHSO4 sys-

tem differs sharply from those in terms of interaction

with hydrogen. In aqueous, acidic electrolytes or with

polymer membrane electrolytes, hydrogen adsorption

or desorption peaks are typically observed in the region

between �0.8 and �1.2 V at temperatures between

25 and 150 °C.24,38�43 The absence of such peaks here

suggests that hydrogen sorption onto the surface of Pt

is negligible in the Pt�CsHSO4 system. An unfortunate

consequence of this behavior is that, in contrast to

aqueous and polymer systems, hydrogen adsorption

peaks cannot be used to estimate the surface area of

Pt available for electrocatalysis in solid acid fuel cell

electrodes. Similarly, without further information on

the characteristics of Pt oxide reduction, the corre-

sponding peak in the voltammogram cannot be em-

ployed for determining the Pt�CsHSO4 contact area.

Impedance Spectroscopy. Selected impedance spectra

representative of oxygen reduction at the Pt�CsHSO4 in-

terface are presented as Nyquist plots in Figures 3 and

4. While the bulk of the experimental details regarding

acquisition of such spectra are provided in the Meth-

ods section, some aspects are highlighted here because

the high impedance of the Pt�CsHSO4 system in the

nanoprobe geometry requires special consideration

with respect to effects from external noise. All spectra

collected were corrected with an open circuit measure-

ment which accounted for stray capacitance and other

spurious contributions, and furthermore, the imped-

ance analyzer was calibrated with precision circuits

composed of high-resistance (0.01�100 G�) and

Figure 2. Comparison of typical cyclic voltammograms for
Au�CsHSO4 and Pt�CsHSO4 collected at �150 °C in air
(�0.03 atm H2O) with a scan rate of 100 mV s�1; the voltam-
mograms shown are those obtained after cycling to ensure
stability. Inset is an enlargement of the Pt oxide reduction
peak at �0.34 V and displays both raw data (gray) and
smoothed data (black). The applied force was �2 and
�0.5 �N for Au and Pt, respectively. The Pt probe utilized
is identified as probe 3 in the Methods section.

Figure 3. AC impedance spectra for Pt�CsHSO4 as a function
of overpotential, collected at �150 °C in humidified air
(�0.03 atm H2O), for overpotentials between (a) �0.6 and
�0.8 V, and (b) �0.8 and �1.2 V. The filled data points cor-
respond to frequencies of 200 and 2 Hz, and solid curves in-
dicate equivalent circuit fits to two parallel R-CPE subcir-
cuits in series. The Pt probe utilized is identified as probe 3
in the Methods section.

Figure 4. Typical impedance spectra for Pt�CsHSO4 at over-
potentials of �1.0 and �0.9 V, collected at �150 °C in hu-
midified air (�0.03 atm H2O), showing the presence of two
processes. The filled data points correspond to frequencies
of 200 and 2 Hz, and solid curves indicate equivalent circuit
fits to two parallel R-CPE subcircuits in series. The Pt probe
utilized is identified as probe 2 in the Methods section.
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low-capacitance (1�10 pF) elements comparable in

value to those measured in the present nanoprobe sys-

tem. We also verified that the impedance response is

stable, that is, the spectra features are not transient ar-

tifacts, by examining the agreement between two spec-

tra collected consecutively at �1.0 V, with one mea-

sured by sweeping the frequency in the opposite

direction of the other (see Methods for details). With

these precautions taken, the general features of the ex-

perimental data were found to be satisfactorily

reproducible.

The Nyquist plots presented in Figures 3 and 4 re-

flect data collected from two different Pt probes, where

the response for each was examined as a function of

the applied voltage. In both cases, the total polariza-

tion resistance is a strong function of bias, spanning al-

most 3 orders of magnitude in Figure 3, from �3 G�

at �1.2 V to �1 T� at �0.6 V. Proton conduction

through bulk CsHSO4, typically manifested in bulk con-

ductivity measurements as an ohmic offset at high fre-

quencies,30 is not visible in Figures 3 and 4 because its

contribution is negligible compared to the electrode

processes.

In the absence of a physical model, impedance spec-

tra are commonly analyzed by employing equivalent

circuits, for which the simplest building block is a resis-

tor (R) in parallel with a constant phase element (CPE).

The latter generally represents capacitive effects and

has impedance

where Q0 is a constant, � is the angular frequency, and

n ranges from 0 to 1. When n � 1, the CPE element be-

comes a perfect capacitor with capacitance Q0, and

the parallel R-CPE subcircuit is represented in the

Nyquist plot as a semicircle with its center lying on the

real axes. Deviations of n from 1 are typically interpreted

in terms of a distribution of relaxation times within a

globally measured response.44,45

The impedance spectra shown in Figure 3 consist

of two arcs; the frequency overlap of the two pro-

cesses varied with experiment and spatial position,

with some measurements more clearly depicting the

presence of two electrode processes (Figure 4). The im-

pedance spectra were fitted to an empirical equivalent

circuit model composed of two parallel R-CPE circuits in

series. Fitting results yielded n 	 0.9 for both pro-

cesses, indicating ideal capacitive behavior with a low

dispersion in the characteristic frequency of each pro-

cess. These n values are considerably higher than those

observed for macroscale interfacial processes for which

depression of the electrode arc in the Nyquist plot re-

flects n values in the range of 0.6�0.8.4,9,12,15,16 Low n

values for interfacial processes are commonly attributed

to spatial heterogeneities at the electrode�electrolyte

interface.44,45 The observation of a low dispersion of re-
laxation times in the present measurement suggests
that, at the nanoscale, averaging effects are eliminated.
In turn, because of the low dispersion, it is possible
from these measurements to clearly observe two pro-
cesses, despite the similarity of their relaxation times. In
a macroscopic measurement with low n, deconvolu-
tion of interfacial processes that are close in character-
istic frequencies would likely not be possible.

The bias dependence of the resistances associated
with the two processes (Figure 5) reveals that the resis-
tance of the low-frequency process, RLF, is strongly de-
pendent on voltage, decreasing from 1 T� at �0.6 V to
less than 1 G� at �1.2 V. In the semilog plot, an appar-
ent exponential dependence is evident. In contrast,
the resistance of the high-frequency process, RHF, is
largely independent of bias, displaying an erratic volt-
age dependence between 1 and 10 G� that is almost
within the noise of the measurement. The total electro-
chemical resistance, RTOT, which is simply the sum of
RLF and RHF, is accordingly dominated by RLF at low bias
and by the fixed value of RHF at high bias. While the data
here are presented for one representative set of imped-
ance spectra, such behavior was observed in multiple
measurements. An analysis of the capacitances associ-
ated with the two processes and their bias dependence
is not presented here due to their relatively high fit-
ting errors.

The electrochemical reaction of interest (eq 1) is rep-
resented by the cathodic branch of the cyclic voltam-
mogram. Cyclic voltammograms obtained at slow scan
rates (such that capacitive and other transient effects
are reduced) can be employed for quantitative analysis
of oxygen reduction kinetics. For such an analysis, it is
essential to recognize that the oxygen reduction reac-
tion occurs on Pt metal only at voltages negative of
that for the Pt�PtOx couple; at all other voltages,
O2 � 4H� � 4e�º 2H2O occurs on platinum oxide.
An implication of Pt oxide formation is that, for a fuel

Figure 5. Total polarization resistance (RTOT) and electrode
resistances (RLF, RHF) determined by fitting AC impedance
spectra (shown in Figure 3) to two parallel R-CPE circuits in
series. Lines indicate the general trends of each parameter
and were obtained by linear fits of RHF and RLF and their sum,
RTOT. Resistance is plotted on a logarithmic scale.

ZCPE ) 1

Q0(iω)n
(2)
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cell under open circuit conditions, platinum catalyst at

the cathode is oxidized, and the initial current drawn

contains a contribution from Pt oxide reduction.

Analysis of Oxygen Reduction Kinetics. The behavior re-

vealed in Figure 5 suggests that the DC current across

the Pt�CsHSO4 interface should, like the AC resistance,

display an exponential dependence on bias within an

appropriate range of voltages. In Figure 6, we plot, on

a semilog scale, data obtained from the return sweep

(implying the oxide has already been reduced to the

metal) of the cathodic branch of a cyclic voltammogram

collected at a 5 mV s�1 scan rate, and indeed, linearity

is observed between �1 and �0.6 V. At higher biases

(beyond �1 V), the deviation from linearity in the semi-

log plot is readily attributed to the increasing impor-

tance of the bias-independent resistance term (Figure

5). At smaller biases (less than �0.6 V), the scatter is a re-

sult of the overall low current and a nonzero offset cur-

rent (correction procedures for which are described in

the Methods section). In principle, the results of Figures

5 and 6 can be numerically converted from one form

to the other; however, the thermal drift in the system

(estimated to be �0.1 nm s�1 at 150 °C) precludes quan-

titative comparisons. Nevertheless, the overall agree-

ment between the AC and DC measurements, in terms

of the functional form of the data, demonstrates the ro-

bustness of the experimental approach pursued here

for examining electrode kinetics. Both measurements

methods are utilized, as AC impedance spectroscopy

provides invaluable mechanistic information, that is, the

elucidation of multiple processes and their relative

time scales, whereas cyclic voltammetry enables quan-

tification of selected kinetic parameters.

A voltage-dependent resistance is a typical feature

of charge-transfer electrochemical reactions, and the

exponential dependence of RLF on bias suggests analy-

sis in terms of conventional Butler�Volmer reaction ki-

netics. In a generic sense, the charge-transfer reaction

associated with oxygen electroreduction at the

Pt�CsHSO4 interface can be described as39

where kc and ka are the rate constants for the cathodic

and anodic directions, respectively, and a single-

electron process has been assumed. The kinetics associ-

ated with this reaction can be expressed in terms of

the Butler�Volmer equation

where i0 is the exchange current, 
 � E � Eeq is the over-

potential, � is the exchange coefficient which ranges

from 0 to 1, and F, R, and T have their usual meanings.

At the large negative overpotentials selected for the

analysis performed here (due to both Pt oxidation and

significant offset current at small overpotentials), only

the cathodic branch of the Butler�Volmer equation

need be considered. For 
 �� 0, eq 4 reduces to

or, in Tafel form

Thus, from a linear fit to the semilog data, one obtains

the exchange current density (from the extrapolated in-

tercept at zero bias or overpotential) and the exchange

coefficient (from the slope). As an alternative to eq 6,

one can consider introduction of a term that accounts

for the observation of an additional, bias-independent

process (effectively accounting for RHF). Attempts to fit

an appropriately modified expression, however, were

largely unsuccessful because of the insensitivity of the

fit parameters, and hence the determination of proper-

ties associated with the high-frequency process from

the voltammograms was not pursued.

For the specific data set presented in Figure 6

and a fit over the potential range from �0.65 to

�1.0 V, we obtain � � 0.53 
 0.01 and i0 �

(5.0 
 0.2) � 10�18 A. Because the area of electrochemi-

cal activity at the probe tip is unknown, the value deter-

mined for the exchange current cannot be readily inter-

preted quantitatively or compared to literature

measurements. The exchange coefficient, in contrast,

is independent of these uncertainties, and its absolute

value has significance. This parameter provides a mea-

sure of the asymmetry of the activation barrier for the

charge transfer. For a single-electron process, � should

lie between 0 and 1, with � � 0.5 corresponding to per-

fect symmetry of the anodic and cathodic directions of

the charge transfer step. A value of 0.53 as obtained

Figure 6. Semilog plot of the cathodic branch of the cyclic
voltammogram for Pt�CsHSO4. The voltammogram was col-
lected with a 5 mV s�1 scan rate at �150 °C in humidified air
(�0.03 atm H2O). The exchange coefficient and exchange
current can be extracted from the slope and intercept, re-
spectively, by fitting the linear regime to the Tafel equation
(eq 6). The Pt probe utilized is identified as probe 3 in the
Methods section.

O + e- y\z
kc

ka

R (3)

i
i0
) exp[-RF

RT
η] - exp[(1 - R)F

RT
η] (4)

i ) i0exp(-RF
RT

η) (5)

log(i) ) log(i0) - RF
2.3RT

η (6)
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here falls within the range typically observed in aque-

ous electrolyte systems (� � 0.3�0.7).39

Heterogeneity of Electrochemical Kinetics. As already

noted, conducting atomic force microscopy enables an

exploration of the spatial variation of electrode kinetics

at Pt�CsHSO4 with relative ease. A scanning electron mi-

crograph (Figure 7a) shows typical surface features of

polycrystalline CsHSO4 after testing. Alongside it is an

AFM topography scan of a 5 � 5 �m2 region, collected

under operating conditions, that includes (nominal)

spatial positions at which electrochemical measure-

ments were acquired (Figure 7b). The electron micro-

graph shows large crystalline grains, 5�10 �m in size,

whereas the topography scan, collected at higher reso-

lution, reveals finer features (�1 �m) and a rms rough-

ness of �30 nm. Cyclic voltammograms measured at

each position were stable upon cycling and, within a

moderate range (see Methods section), insensitive to

the value of the applied force, and therefore, the data

are considered reliable for evaluating the electrochemi-

cal response at each position. However, the extent of

thermal drift after measuring several positions pre-

cludes a precise correlation of electrochemical reaction

rates with surface features.

The voltammograms obtained at 16 different points

across the electrolyte surface (Figure 8a) exhibited fea-

tures similar to that in Figure 6. Specifically, for each vol-

tammogram, a plot of log(i) as function of bias re-

vealed a linear regime at low bias followed by a

decrease in the slope at high bias. Furthermore, imped-

ance spectra collected at �1.0 and �0.9 V for select po-

sitions (not shown) were qualitatively similar to one an-

other and to the results in Figure 4, indicating, in all

cases, a high-frequency process with a (largely) bias-

independent resistance and a low-frequency process

with a resistance that decreased sharply with bias. Thus,

one can conclude that the mechanistic steps involved

in oxygen electroreduction at the Pt�CsHSO4 interface

are maintained across the electrolyte surface.

While the general shape of the voltammograms

and impedance spectra were reproduced at different lo-

cations, the specific values differed substantially. For ex-

ample, in the voltammetry experiments, at �0.95 V,

the measured current ranged between �1.5 and

�4.5 pA, a 3-fold variation. This variation is, in turn,

manifested as notable variations of the exchange coef-

ficient and exchange current across the electrolyte sur-

face, as extracted from a Tafel analysis of the linear re-

gime of each voltammogram, typically occurring at

overpotentials between �1.0 and �0.6 V. For the spe-

Figure 7. (a) Scanning electron micrograph of a typical
CsHSO4 surface acquired after electrochemical testing.
(b) Topography scan of the polycrystalline CsHSO4 surface
collected at �150 °C in humidified air (�0.03 atm H2O). La-
bels denote nominal positions at which electrochemical
measurements were acquired (Figure 8).

Figure 8. (a) Semilog plot of cyclic voltammograms (cathodic
branch) for Pt�CsHSO4 at select points across the surface
shown in Figure 7b. Data were acquired with a 25 mV s�1

scan rate at �150 °C in humidified air with �0.03 atm H2O
(using probe 1, as described in the Methods section). (b) Ex-
change coefficient, �, and exchange current, i0, plotted as
functions of position. Parameters were extracted from fit-
ting the linear regime of each curve in (a) to the Tafel equa-
tion (eq 6). In some instances, the error bars for � are smaller
than the data markers.
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cific surface shown in Figure 7b, � ranges from 0.22 to
0.39 and i0 from 0.2 to 6 fA (Figure 8b), with the two pa-
rameters apparently counter-correlated (i.e., i0 de-
creases as � increases). Rather remarkably, a summary
of the data for measurements of six different Pt�CsHSO4

interfaces (Figure 9) reveals a counter-correlation be-
tween � and i0 that extends over several orders of mag-
nitude in i0 and a factor of 6 in �. Specifically, across
the six experiments, � spans from 0.1 to 0.6, with an av-
erage value of 0.3 
 0.1, and i0 correspondingly spans
from 5 � 10�14 to 5 � 10�19 A. The spatially averaged
exchange coefficient of 0.3 falls in the range,
0.35 
 0.05, measured for the Pt wire�CsH2PO4 system
at �240 °C in humidified O2 with �0.35 atm H2O (un-
published data). For Pt wire�CsH2PO4, the working elec-
trode was a 250 �m diameter Pt wire embedded in
CsH2PO4, and thus, the exchange coefficient from such
a geometry can be treated as representative of an area-
averaged electrochemical response.

Ignoring for the moment the counter-correlation be-
tween � and i0, the simple observation that these pa-
rameters vary so substantially with position demon-
strates that electrochemical reaction rates at Pt�CsHSO4

are indeed highly influenced by nanoscale surface fea-
tures of the polycrystalline electrolyte. Because varia-
tions in applied force produced no detectable change
in the features of the voltammograms (see Figure 13a),
changes in the extent of electrochemical reaction area
are unlikely to be responsible for the large variations in
i0 or �. The relevant surface features may include the
crystallographic orientation of the surface termination
and the occurrence of grain or domain boundaries, or
even dislocations with surface termination. Any of these
features may influence the residual surface charge and
be a means of influencing electrochemical reaction
rates. As stated at the outset, because the electrochemi-
cal reactions in solid electrolyte fuel cells involve sur-
face reaction steps, nanoscale heterogeneity is to be ex-
pected. The clear counter-correlation between � and
i0, however, is unexpected. The observation of a com-
mon correlation between � and i0 for six different
Pt�CsHSO4 interfaces, furthermore, leaves little doubt
that the phenomenon is real and suggests a common
mechanism for these different interfaces. Within the
Butler�Volmer framework, a large value of i0 corre-
sponds to a small reaction barrier between oxidized
and reduced states (eq 3) under equilibrium conditions.
A small value of �, which occurs for those reactions
sites with large i0, corresponds to a minimal decrease
in the activation barrier under bias. The counter-
correlation thus reflects a physical situation in which re-
action pathways with small barriers under equilibrium
conditions are relatively unaffected by the applied bias,
whereas those with high barriers under equilibrium
conditions are strongly decreased under bias. While
there is no fundamental basis for expecting such a re-
sult, a priori, the counter-correlation creates a situation

in which, under a given bias, all reaction sites attain a

comparable level of electrochemical activity, as re-

flected in the value of the current (under bias) rather

than the exchange current (under zero bias). A direct

correlation between � and i0, in contrast, would imply

that sites with low barriers under open circuit condi-

tions become even more active relative to other sites,

under bias, and hence an immediate divergence in ac-

tivity. An extensive search of the relevant literature did

not uncover any studies showing such a wide-ranging,

systematic and correlated variation of � and i0 within a

given electrochemical system, although, in some in-

stances, variations as a function of a third parameter

(e.g., temperature, electrode/electrolyte composition,

or electrode particle size)46�53 have been explored. Fur-

ther study to explicitly identify the surface features

that influence electrochemical reaction kinetics at the

Pt�CsHSO4 interface and electrolyte�metal�gas

boundaries in general is underway.

CONCLUSION
We demonstrate the use of conducting atomic force

microscopy as a tool to quantitatively probe oxygen re-

duction kinetics in controlled environments and at el-

evated temperatures. We employ AC impedance spec-

troscopy to gain insight into the mechanism of

electrocatalysis and cyclic voltammograms for quantita-

tive analysis of oxygen reduction kinetics in the

Pt�CsHSO4 system. The oxygen reduction reaction is lim-

ited primarily by an overpotential-activated process

that exists at low frequencies, with an additional imped-

ance contribution, at high overpotentials, from a pro-

cess that is weakly overpotential-dependent. Our abil-

ity to deconvolute these two processes derives, we

believe, from the nanoscale measurements. At this

scale, the measurements are free of averaging effects,

leading to near-ideal capacitive behavior and minimal

Figure 9. Semilog plot of i0 as a function of �, showing a
linear relationship across six different data sets, with the
probe type indicated in the legend. Data were collected at
�150 °C in humidified air (0.01�0.03 atm H2O). In some in-
stances, the error bars for i0 and � are smaller than the data
markers.
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dispersion in the frequency response. The
overpotential-activated step was interpreted as charge
transfer and evaluated using the Butler�Volmer equa-
tion. Within the Butler�Volmer framework, a spatial
variation in kinetics, represented by the exchange coef-

ficient and exchange current, was observed across six
independent measurements. That the correlation be-
tween log(i0) and � for all six experiments collapses into
a single line demonstrates the robustness of our experi-
mental approach.

METHODS
Half-Cell Fabrication. CsHSO4 powder was synthesized by rapid

precipitation of a mixture of aqueous Cs2SO4 (99.99%, Alfa Ae-
sar) and aqueous H2SO4 (95 wt % in water, EMD Chemicals) by ac-
etone, followed by filtration and drying at �100 °C. Electrocata-
lyst mixtures were made from a toluene slurry composed of Pt
black (	99.9%, fuel cell grade, Sigma Aldrich), Pt/C (40% on car-
bon black, Alfa Aesar), and CsHSO4 in a Pt:Pt/C:CsHSO4 weight ra-
tio of 3:1:3; the slurry was sonicated and dried at �100 °C. Half-
membrane electrode assemblies were fabricated by uniaxially
pressing CsHSO4 powder onto a Pt:Pt/C:CsHSO4 composite elec-
trode supported on Toray paper (TGP-H-120) for 20 min at 490
MPa. The CsHSO4 surface of the resulting half-cell was then pol-
ished with a �2 �m grit silicon carbide cloth and blown with a
dry air jet. Fabricated assemblies were 9.3 mm in diameter and
0.5�1 mm thick.

Experimental Conditions. Fabricated half-cells were mounted
onto the hotstage of a PicoSPM atomic force microscope (Series
4500, Agilent Technologies) equipped with an environmental
chamber and a scanner head with x�y and z ranges of �30 and
�6 �m, respectively. The temperature of the hotstage was set
to �170 °C to attain a CsHSO4 surface temperature of �150 °C.
(The temperature gradient across the cell generated an open cir-
cuit voltage of less than 1 mV.) Humidified synthetic air, gener-
ated by bubbling �15 sccm of air through water at room tem-
perature (�0.02�0.03 atm H2O), was continuously fed through
the environmental chamber. Electrochemical characterization
was carried out using an externally connected potentiostat
equipped with a femtoammeter and a frequency response ana-
lyzer (Modulab, Solartron Analytical), which were calibrated us-
ing high impedance circuits comprising 0.01�100 G� resistors
and 1�10 pF capacitors. Electrochemical characterization was
carried out in potentiostatic mode; voltages are applied across
the entire cell (probe�CsHSO4�composite electrode), with the
probe as the working electrode and the large composite elec-

trode serving as the counter and reference electrode. All volt-
ages reported in this work are, therefore, with respect to the
large composite counter electrode, that is, an air electrode refer-
ence which is �1.13 V relative to 2H� � 2e�º H2 at �150 °C.
To reduce contributions of external noise, the microscope was
placed in a copper mesh Faraday cage which, like the shielding
for the electrical leads, was grounded though the potentiostat
ground. The microscope body, which was separately grounded,
was electrically isolated from the cage. Stray capacitance and
other spurious contributions were found to depend on the cur-
rent range of the potentiostat, and therefore, open circuit correc-
tions were obtained by withdrawing the probe from the sample
and taking impedance measurements at each current range.
Point-wise open circuit corrections were applied to all imped-
ance spectra presented; a representative open circuit correction
is shown in Figure 10. Short circuit measurements, obtained by
contacting the conductive probe to a piece of gold foil, dis-
played the behavior of a pure resistor with a resistance on the or-
der of 5 k�, negligible relative to the high impedances of the
nanoprobe setup employed in this work.

Measurement Conditions. Cyclic voltammograms were collected
by sweeping between �1.1 and 0.5 V with scan rates, �, of
5�400 mV s�1. Impedance measurements were carried out with
a 100 mV perturbation about voltages ranging from �0.6 to
�1.2 V with frequencies of 106�10�1 Hz. The acquisition time
for each spectrum was �2.5 min, and three spectra for each volt-
age were acquired. The working electrodes were metal-coated
Si-based AFM probes (MikroMasch) with specifications shown in
Table 1. A majority of the platinum data presented in this work
are from probes 1 and 3. Forces applied with the Pt probes were
between 0.2 and 0.5 �N during electrochemical measurements
and �0.1 �N when rastering the surface for imaging. Stationary
cyclic voltammograms collected as a function of position were
composed of three cycles at 100 mV s�1 (to attain stable voltam-
mograms) followed by two cycles at 25 mV s�1 (used for quanti-
tative analysis) for probes 1�4, and five cycles at 100 mV s�1

for probes 5 and 6. Impedance spectra at �1.0 and �0.9 V were
measured at select spatial positions to verify that the primary
features of the spectra had not changed. The thermal drift of
�0.1 nm s�1, estimated by the imaging and tracking of surface
features, impacts bias-dependent impedance measurements
which required �50 min acquisition time. On the other hand, cy-
clic voltammetry measurements required only several minutes
of acquisition time (depending on the scan rate employed), and
moreover, the voltage range used for analysis only required
�30 s (corresponding to a drift of no more than 3 nm) to acquire.

Data Analysis. Fitting of impedance spectra was carried out us-
ing the commercial package Zview (Version 2.9b, Scribner Asso-
ciates, Inc.). Spectra were fitted using two parallel R-CPE subcir-

Figure 10. Representative (a) Nyquist and (b) Bode�Bode
plots collected at �1.1 V before and after applying a point-
wise open circuit correction. Data presented here are ob-
tained using probe 6, as identified in Table 1.

TABLE 1. Conducting AFM Probes Employed in This Study

adhesion layer
spring constant k

[N m�1]a

total tip radius rtip

[nm]a

probe 1 10 nm Pt on 20 nm Ti 5 40
probe 2 10 nm Pt on 20 nm Ti 5 40
probe 3 10 nm Pt on 20 nm Ti 5 40
probe 4 10 nm Pt on 20 nm Ti 1.8 40
probe 5 25 nm Pt on 5 nm PtSi 3.5 40
probe 6 25 nm Pt on 5 nm PtSi 5 40
probe 7 20 nm Au on 20 nm Cr 40 50

aNominal values.
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cuits in series. The value of n for the high-frequency arc, when
treated as a free parameter during fitting, exceeded unity (by no
more than 10%) and was therefore held fixed at 1. Such a fit-
ting procedure yielded n values of 0.91�0.98 for the low-
frequency process. We verified that the appearance of two arcs
in the impedance spectra was not due to transient effects; Fig-
ure 11 shows that two spectra collected consecutively, with fre-
quencies swept in opposite directions, yield identical imped-
ance responses.

Raw cyclic voltammetry data were corrected for nonzero off-
set current by fitting to a Butler�Volmer expression (eq 5) with
an added constant which typically amounted to 10�13 A. A con-
sequence of such a correction is the increased scatter that ap-

pears at low overpotentials in the Tafel plots (Figures 6 and 8a).
For quantitative analysis of oxygen reduction kinetics, capacitive
(transient) effects must be minimized, and thus, voltammo-
grams collected at low scan rates are ideal. We verified that a
scan rate of 25 mV s�1, and even 100 mV s�1, employed for ac-
quiring cyclic voltammograms for spatial variation studies does
not significantly affect the extracted value of �, implying a neg-
ligible impact on the conclusions drawn from data presented
here. Figure 12a is a plot of cyclic voltammograms as a function
of scan rate, while Figure 12b shows � values extracted from fit-
ting of the DC data to eq 6 (for the linear regime of the Tafel
plot, between �0.95 and �0.6 V). Extracted � values range from
0.35 at 400 mV s�1 to 0.40 at 5 mV s�1; the deviation in � for
the data collected at 25 mV s�1 from that at 5 mV s�1, 
0.01, is
well within the variation observed spatially (
0.1 across six dif-
ferent Pt�CsHSO4 systems).

We confirmed that any variations in the force applied be-
tween the Pt probe and the CsHSO4 surface, determined periodi-
cally using force curves, have little effect on the features of the
cyclic voltammograms. Figure 13a is a series of voltammograms
collected at a range of forces that is well beyond any force fluc-
tuations observed during electrochemical measurements. Varia-
tions in both the oxygen reduction and Pt oxide reduction cur-
rents are negligible when the force is doubled, indicating a
minimal effect of force on the data presented and, in particular,
on the observed spatial variation of electrode kinetics. The agree-
ment between the voltammograms, furthermore, implies that
the high-frequency process, which is dominant at high bias, is
not a result of contact resistance at the Pt�CsHSO4 interface. We
also verified that the process of lifting the probe from and reap-
proaching the CsHSO4 surface (a procedure required for acquir-
ing electrochemical data at various spatial positions) has a negli-
gible impact on the features of the cyclic voltammogram (Figure
13b).

Figure 11. Two impedance spectra collected consecutively
at an applied bias of �1.0 V (using probe 3, as indicated in
Table 1), with the second measured by sweeping the fre-
quency in the opposite direction of the first. The agreement
between the two spectra confirms that the shape of the
spectra is not a transient artifact. Spectra were acquired at
�150 °C in air (�0.03 atm H2O).

Figure 12. (a) Cyclic voltammograms for Pt�CsHSO4 collected
at scan rates ranging from 400 to 5 mV s�1 (using probe 3
listed in Table 1), and (b) corresponding exchange coeffi-
cients, �, extracted from fitting the return sweep of the ca-
thodic branch (plotted in Tafel form) to eq 6, showing the de-
pendence of � on scan rate.

Figure 13. Cyclic voltammograms for Pt�CsHSO4 collected at
�150 °C in humidified air with �0.01�0.03 atm H2O (a) at
forces, ranging from 0.16 to 0.45 �N, applied between the
probe and the CsHSO4 surface (probe 6) and (b) at the same
location on the surface, before withdrawing the probe and
after reapproaching (probe 3).
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